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Exact Solution of a Triangular Ising 
Model in a Nonzero Magnetic Field 1 
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A closed-form expression is obtained for the free energy per site of the Ising 
model on the triangular lattice in a nonzero magnetic field and with two- and 
three-site interactions. The solution is valid along a trajectory in the parameter 
space, and is derived using a method of exact decimation. A criterion determin- 
ing the validity of the decimation method is also established. 
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1. INTRODUCTION 

One outstanding unsolved problem in statistical mechanics is the closed- 
form computation of the free energy of the two-dimensional Ising model in 
a nonzero magnetic field. In 1976 Verhagen (1~ considered one particular 
triangular Ising model, and obtained its solution along a certain trajectory 
in the parameter space. This solution, which was obtained through the con- 
sideration of a stochastic crystal growth model, has since been extended by 
Rujim (~ to the fully isotropic antiferromagnetic model with nearest- 
neighbor interactions. Quite recently, it has been further recognized that 
the nonzero field triangular Ising model is related to a number of other 
important two-dimensional lattice-statistical problems. The nearest- 
neighbor model is shown to relate to the problem of directed lattice 
animals, (~ and the Ising model with two- and three-spin interactions is 
equivalent to cellular automata and directed percolation. (4) Therefore, it is 
not without interest to seek for further solutions of the triangular Ising 
system. In this connection it should be pointed out that the hard-hexagon 
problem solved by Baxter (5~ corresponds to an infinite-field, infinite- 
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interaction limit of the antiferromagnetic triangular Ising model. Enting (6) 
has also formulated the general triangular Ising model as a crystal growth 
model, and considered the soluble cases for zero field and isotropic interac- 
tions. It appears that the corresponding solution for the general 
(anisotropic) triangular model has not been previously Nven; it is also 
desirable to have alternate, and hopefully simpler, derivations of the 
solution without the recourse of the intermediate step of a crystal growth 
model. 2 

It is the purpose of this paper to provide such a solution. (*t We con- 
sider the general triangular Ising model with two- and three-spin interac- 
tions in a nonzero magnetic field as shown in Fig. 1, and use a simple 
decimation procedure to derive its free energy along a trajectory in the 
parameter space. For zero three-spin interactions our trajectory reduces to 
that considered by Ruj~t, (2) but our procedure permits a simple and direct 
evaluation Of the free energy. We also obtain a criterion which determines 
the validity of the decimation procedure. 

Consider an Ising model on a triangular lattice, shown in Fig. 1, of N 
sites with the Hamittonian 

= - (J :  G2a  + +-/3 a2 + Jo':  2o'3)- H V  ( t )  

where H is the external magnetic field, and the summation Za  is taken 
over all up-pointing triangular faces, shaded in Fig. 1, of the lattice. Our 
goal is to compute the partition function per site 

~ =  lim Z I/N (2) 
N - +  eO 

where Z is the partition function defined by (t). 

2. THE SOLUTION 

Orient the lattice as shown in Fig. 1 where a periodic boundary con- 
dition is imposed in the horizontal direction only. We modify the 
Hamiltonian (1) by changing the external field applied to the spins located 
on the upper boundary to a new value H'. Then each term in emL'Z is a 
positive Boltzmann weight multiplied to a factor which is a power of e 2L', 

: After the completion of this work we received a preprint from M. T. Jaekel and I M. 
MaiUard {7} who formulated the decimation method adopted here for general spin models, 
and obtained (18) and (t9) for the nearest-neighbor triangular Ising model as a special 
application. They did not, however, discuss the effect of the boundary field and the 
associated validity conditions. 
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Fig. 1. Triangular lattice with periodic condition in the horizontal direction. The open circles 
in the same row indicate the same site. 

where L '  = H'/kT and  m is the n u m b e r  of  co lumns  of  the lattice. I t  follows 
that  the modi f ica t ion  of  the b o u n d a r y  field will no t  change  the bulk  free 
energy In ~c p rov ided  tha t  3'4 

e 2L' 2> 0 or  cosh 2L '  > 1 (3) 

We take  m = even so Z is a lways  posit ive.  
The  pa r t i cu la r  b o u n d a r y  cond i t ion  we chose permi t s  us to ca r ry  out  

the pa r t i t ion  sums over  the spins loca ted  in the upper  b o u n d a r y  row. In 
fact, we car ry  out  the spin sums over  in the first row of  spins in Fig. 1, and  

require  

exp(L'0.3 + K0.102 0-3 + K10.2 0.3 + K2 0.3 0.1 + K3 0.t 0.2) 
0" 3 

= Fexp(L*0.1  + L '0 .2 )  (4) 

3 If e 2L' is negative (or complex), then terms in the partition function may cancel and the bulk 
free energy (2) will be dependent on the boundary field. This is borne out by the J = 0  
solution in Sec. 3. 

4 Strictly speaking, modification of the boundary field requires that the LHS of (4) multiplied 
by e L' is positive. Then (13) leads to generally complex field L if (3) does not hold. 
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where Ki = J j kT ,  K =  J/kT. Explicitly, (4) is written as 

2e/~3 cosh(L' + K +  K1 + K2) = Fe L~ + Lr 

2e x3 cosh(L' + K -  K1 - / s  = Fe-I~? - L~ 

2e -x3 cosh(L' - K +  K1 - K2) = Fe -rr  +.cr 

2e-X3 cosh(L' - K -  K1 + K2) = Fe L~ - z.~ 

(5) 

Using the four equations given by (5) we can uniquely determine the four 
unknowns L', F, L*, and L] .  This leads to 

F 2 = -2(s inh  2K1 sinh 2K2 + sinh 2K sinh 2L')/sinh 2K3 (6) 

e 2 ( L T + c ; ) = c o s h ( L ' + K + K l + K 2 ) / c o s h ( L ' + K - K 1 - - K 2 )  (7) 

where L' is to be determined from 

Ae2E + B + Ce - 2r' = O (8) 

with 

A = sinh 2(K3 + K), C = sinh 2(K 3 - K) 

B = e 2K3 cosh 2(KI + K 2 ) -  e -2Kx cosh 2(K i - / s  
(9) 

NOW the quadratic equation ax 2 + bx + c = 0 has a positive solution only if 
ac<O, or ac>O, ab<O, and b2>4ac. It then follows from (3) and (8) that 
our procedure is valid for 

l Jt > ]J3t (10) 

and for 

lJl < IJ3l ( t l )  

provided that 

B 2 ~ 4 A C ,  K3B<O (12) 

The particular form of the Boltzmann weight on right-hand side of (4) 
indicates that the partition sums have, in effect, decimated the first row of 
shaded triangles (cf. Fig. 1). The remaining lattice is an exact copy of the 
original one except that it has one less row. The new boundary spins now 
have fields L + L* + L*, where L = H/kT. If L further satisfies 

r+C** +L~ '=E (13) 
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then we can repeat the decimation process by summing over the new boun- 
dary spins. Continuing in this fashion, we eventually decimate all spins 
except those in the last row. But this last row of spins gives rise to a factor 
(2 cosh L ' )  m which is positive and therefore can be neglected in the bulk 
limit. Now each decimated triangle contributes a factor F to the partition 
function Z. We finally obtain from (2) and (6) the expression 

~c = [- -2 ( s inh  2K 1 sinh 2K 2 + sinh 2K sinh 2L')/sinh 2K3] 1/2 (14) 

where L '  is to be determined from (8). This solution is valid along the tra- 
jectory (13), which can be rewritten as, using (7), 

e x, -/~2 sinh(2L' + K )  - e x~ + *:2 sinh K 
sinh L - [2 cosh 2(K1 + K2) + 2 cosh 2 ( K +  L ' ) ]  1/2 (15) 

The solution is confined to the regions specified by (10) and by (11) and 
(12). 

3. D I S C U S S I O N S  

The solution (14) is analytic in K and Ki so there is no phase trans- 
ition a long  the trajectory (15). It is instructive to examine the solution in 
some special cases. 

(a) J3 = 0. By taking the appropriate limits of (8) and (14), we find 

~c = [2(cosh 2K1 cosh 2K2 + cosh 2Kcosh 2L' ) ]  1/2 (16) 

where 

sinh 2 L ' =  - s i nh  2K1 sinh 2K2/sinh 2K (17) 

The magnetic field L is obtained by substituting (17) into (15), and, as a 
consequence of (10), the solution (16) is valid for any J r  0. 

(b) J = 0 .  This is the Ising model with pure two-site interactions. 
Now, the relations from which we determine L are the same as those given 
in Ref. 2,5 so we are led to the same soluble trajectory as that of Ref. 2. But 
our procedure permits a direct determination of the free energy. We find 

~c = [ -  2 sinh 2Kj sinh 2 K z / s i n h  2/(3] 1/2 (18) 

5 This can be seen by comparing (4) and (13) with (2.8), (2.9), and (2.10) of Ref. 2. 
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and 

- 4  
sinh z L = 

(e 4/q --  1 )(e 4'% --  t )(e 4K3 -- t ) 

x [e 4& cosh2(K1 + K:) - cosh2(K1 - K2)] 

x [e 4K3 sinha(K~ + g2) - sinh2(K1 - K2)] (19) 

For a given Ising model with fixed J1 ,  J2 ,  and J3, the expression (18) 
gives rise to three distinct solutions, obtained by permuting K1, K2, and 
K3. These three solutions correspond to different values of the boundary 
field L', and the condition (3) is now used to single out the one for the 
model (1). 

Direct evaluation using (8) leads to 

e-2/s sinh 2K1 sinh 2/s 
eosh 2L' = cosh 2(K1 +/(2)  (20) 

sinh 2K3 

Hence (3) implies that we must have 

J1J2J3 < 0 (21) 

Therefore our result applies to the ant!ferromagnetic model (21). Using (20) 
and (21), the validity condition (3) can be simplified as 

cosh2(K1 - K2) I (22) 
[e 4K~-, 1[< i cosh2(K * + K2) 1 

It can be verified that (22) can hold only when 

and 

tJ3t < tJ l l ,  I J21 (23)  

T<~ T O (24) 

where To is the disorder temperature of the antiferromagnetic Ising 
system. ~ In the region specified by (21) and (23) the disorder temperature 
is given by 

e 2'v3 = cosh(K I - K2)/cosh(K1 + K2) (25) 

It can also be verified that the right-hand side of (19) is nonnegative in the 
region (2I) and (24). Therefore (19) always leads to real values of L Par- 
ticularly, we find L = 0 at T =  TD and that the two other T =  To solutions, 
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obtained by permuting KI, K2, and K3 in (18) and (19), correspond to the 
boundary condition e 2r'= -1 ,  and hence are not valid solutions. [Per- 
mutation of K1, K2, and K3 in (19) leads to the same TD when L = 0 . ]  At 
T = 0  the trajectory (19) terminates at H =  +_H,, where H,. is the 
maximum field for which a doubly degenerate (square-order) phase will 
occur at T=0.  H , . = 2  lJll + 2  J J 2 } - 4  I J31 if all J i<0 ;  H , . = 2  l J ~ l - 2  ]J3l, 
if only one J~ < 0. (I~ Therefore the trajectory (19) does not appear to inter- 
sect the phase boundary. 

(C) J =  ~J3. In this case the solution is given by (14) and (15) with, 
from (8), 

e 2K3 cosh 2(K1 - K2) - e 2K3 cosh 2(K1 + K2) 
e • _ (26) 

sinh 4K3 

Again, we find from (3) that the solution is valid for the model specified by 
(21) and (23), and is confined in the regions 

T~< T~ (27) 

where T~ is the temperature defined by 

e 4'v3 = cosh 2(K I - K2)/cosh 2(K1 + K2) (28) 

4. S U M M A R Y  

We have succeeded in computing the partition function per site for the 
Ising model (1). The solution, given by (14) and (15), is valid under the 
condition (3), or, equivalently, (10)-(12). For the nearest-neighbor model 
the condition specifies the antiferromagnetic model (21) and (23) at 
T~< TD. The condition (23) indicates that decimations must be used with 
care, and that it is valid only when carried out along one preferred lattice 
direction. 
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